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ABSTRACT 

ANDERSEN, BRIAN DOUGLAS. Development and Assessment of Multi-Objective 

Optimization Utilizing Genetic Algorithms for Nuclear Fuel Assembly Design. (Under the 

direction of Dr. David Kropaczek.)  

 

MOOGLE, Multi-Objective Optimization utilizing Genetic algorithms for Lattice 

Enhancement, is a new genetic algorithm developed for the optimization of PWR and BWR fuel 

assemblies. MOOGLE advances the field of nuclear fuel management by using three-dimensional 

fuel rod types as the decision variables within the assembly optimization, instead of the standard 

two-dimensional pin cell lattice. Using fuel rod types as the genes within the genetic algorithm 

optimization framework allows whole assemblies to be optimized at once, rather than focusing on 

two-dimensional fuel lattices. Additionally, it allows core designers to easily see the economic 

tradeoffs between assembly performance and manufacturability through the addition of objective 

functions or constraints related to characteristics of the fuel rod types within the optimization, such 

as the number of unique rod types allowed in optimized designs. 

A novel feature of the MOOGLE algorithm includes the use of a desired solution space 

and binning procedure to store valuable optimization solutions. MOOGLE additionally uses a 

tournament selection method for determining which solutions will be selected as the parents of the 

next generation. To preserve solution niching, solutions undergoing crossover seek to mate with 

solutions composed of similar rod types.  

The algorithm was tested by performing a sensitivity analysis on the various parameters 

involved in the optimization such as mutation rate, population size, and parent selection weights. 

The sensitivity analysis was performed by optimizing a PWR fuel assembly with the objectives of 

minimizing peak pin power, minimizing peak reactivity, and maximizing end of cycle reactivity. 

The algorithm also demonstrated the ability to show the tradeoffs between the addition of rod types 
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by comparing the results of optimizations using IFBA, gadolinium, and a combination of IFBA, 

as well as gadolinium for a PWR fuel assembly in octant symmetry with the same objectives as 

the sensitivity analysis. Finally, to demonstrate the MOOGLE’s ability to optimize entire fuel rod 

bundles, a whole BWR fuel bundle was optimized using MOOGLE.  

Cases using the PWR run time averaged between 6 and 8 hours. The first BWR 

optimization case ran in four hours. The second BWR optimization case took between one and 

five days to run depending on the number of rod types used in the optimization. The reason for the 

long length of time optimize the second BWR case is due to the length of time required to evaluate 

multiple Casmo4e problems for a single problem solution. All optimization cases were run on the 

RDFMG cluster at North Carolina State University. The RDFMG cluster uses six processing nodes 

equipped with a QUAD AMD Opteron 6320 HGST 3.5” 6TB SAS 6 GB/s, Kingston 16x 8GB 

1600 MHz DDR3 and 40 GB QDR Infiniband. 

  

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

 

 

 

 

 

 

© Copyright 2018 by Brian Andersen 

All Rights Reserved



www.manaraa.com

Development and Assessment of Multi-Objective Optimization Utilizing Genetic Algorithms for 

Nuclear Fuel Assembly Design. 

 

 

 

 

by 

Brian Douglas Andersen 

 

 

 

 

A thesis submitted to the Graduate Faculty of 

North Carolina State University 

in partial fulfillment of the  

requirements for the degree of 

Master of Science 

 

 

 

Nuclear Engineering 

 

 

 

Raleigh, North Carolina 

 

2018 

 

 

 

APPROVED BY: 

 

 

 

 

 

_______________________________                       _______________________________ 

Dr. David Kropaczek                                                            Dr. Jason Hou 

Committee Chair 

 

 

 

 

_______________________________ 

Dr. Ralph Smith 



www.manaraa.com

ii 

 

DEDICATION 

For my parents, Catherine and Douglas. Thank you for all of your love and support over 

the many years. 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

iii 

 

BIOGRAPHY 

Brian Andersen was born and raised in Billings, Montana. After graduating from 

Skyview High School in 2012, he attended Idaho State University. While at Idaho State 

University, Brian Andersen participated in the Washington Internship for Students of 

Engineering. Through this program, he authored a policy paper on restarting the United States 

nuclear waste disposal program. Additionally, Brian Andersen became a licensed reactor 

operator for the AGN-201 nuclear reactor at Idaho State University. Mr. Andersen was also a 

member of the American Nuclear Society and Institute for Nuclear Materials Management. He 

served as secretary in the latter. He graduated from Idaho State University in 2016 with honors 

distinction, earning degrees in nuclear and mechanical engineering. 

Brian Andersen is currently a graduate student at North Carolina State University, 

working under the supervision of Dr. David Kropaczek. His research focuses on artificial 

optimization and machine learning to improve nuclear fuel assembly designs. 

In his spare time, he enjoys the outdoors, regularly visiting the mountains or ocean. 



www.manaraa.com

iv 

 

ACKNOWLEDGMENTS 

I would like to thank North Carolina State University and the nuclear engineering 

department for providing the resources for this research. A special thank you to Dr. Kropaczek 

for all of his help, wisdom, and guidance in the development of MOOGLE. Hermine also 

deserves a warm thank you as well for all of her organizing my life in these past few months to 

allow this research to be completed. Thank you to Dr. Hou, Mario, and Dr. Baelustra for putting 

up with all of the weird things I try to do to the cluster. Finally, I would like to thank the 

members of my defense committee. 

  



www.manaraa.com

v 

 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................................... vi 

LIST OF FIGURES ...................................................................................................................... vii 

LIST OF ACRONYMS AND ABBREVIATIONS ....................................................................... x 

Chapter 1 INTRODUCTION .......................................................................................................... 1 

1.1 Overview ........................................................................................................................... 1 

1.2 Literature Review .............................................................................................................. 4 

1.3 Casmo4e ............................................................................................................................ 6 

Chapter 2 MOOGLE ALGORITHM DESCRIPTION ................................................................... 7 

2.1 Brief Description of Genetic Algorithms .............................................................................. 7 

2.2 Genes, Genomes, and Chromosomes .................................................................................... 8 

2.3 Population Size .................................................................................................................... 10 

2.4 Initialization Population Creation ....................................................................................... 11 

2.5 Survival ............................................................................................................................ 12 

2.6 Parent Selection ............................................................................................................... 16 

2.7 Reproduction ................................................................................................................... 18 

2.8 End of Optimization Conditions ...................................................................................... 21 

2.9 MOOGLE Flowchart........................................................................................................... 21 

Chapter 3 MOOGLE ALGORITHM TESTING .......................................................................... 23 

3.1 PWR Optimization Description .......................................................................................... 23 

3.2 BWR Optimization Description ...................................................................................... 30 

Chapter 4 EXPERIMENTAL RESULTS ..................................................................................... 35 

4.1 PWR Geometry Solution Front Test Case ....................................................................... 35 

4.2 Burnable Poison Analysis Results ................................................................................... 36 

4.3 BOC BWR Problem ........................................................................................................ 44 

4.4 Depletion and Multiple Zone BWR Problem .................................................................. 47 

Chapter 5 Analysis of Results ....................................................................................................... 52 

5.1 Burnable Poison Analysis Discussion ............................................................................. 52 

5.2 BOC BWR Optimization Discussion .............................................................................. 56 

5.3 Depletion and Multiple Zone BWR Problem .................................................................. 58 

Chapter 6 Conclusions .................................................................................................................. 60 

Chapter 7 References .................................................................................................................... 63 

APPENDIX ................................................................................................................................... 65 

 



www.manaraa.com

vi 

 

LIST OF TABLES 

Table 2-1: Example of Gene Descriptor List for the Lattice Optimization Problem...................... 9 
Table 3-1: Rod List for the PWR Lattice Optimization Problem. ................................................ 24 

Table 3-2: Operating conditions used in Casmo4e for PWR lattice physics calculations. ........... 24 

Table 3-3: Selection Weights Used in Sensitivity Analysis. ........................................................ 26 

Table 3-4: Initial and Final Mutation Rates Used in Sensitivity Analysis Optimizations ............ 26 

Table 3-5: Bin Sizes Used in Sensitivity Analysis Optimizations ................................................ 26 

Table 3-6: Population Sizes and Maximum Generations Used in Sensitivity Analysis         

                  Optimizations .............................................................................................................. 26 

Table 3-7: Population Sizes and Maximum Generations Used in BP Analysis Optimizations.... 26 

Table 3-8: Allowed Solution Space for SA and BP Optimizations .............................................. 27 

Table 3-9: Rod List for the first BWR Optimization Problem. .................................................... 32 

Table 3-10: Rod List for the second BWR Optimization Problem. .............................................. 34 

Table 4-1: Number of Generations for Burnable Poison Analysis ............................................... 37 

Table 4-2: Minimum, Maximum, and Average Parameter Values for BOC BWR      

                 Optimization ................................................................................................................ 46 

Table 4-3: Number of Generations for the Second BWR Optimization Problem ........................ 47 

Table 4-4: Average Objective Values for the Second BWR Optimization Problem .................... 47 

Table 4-5: Minimum Objective Values for the Second BWR Optimization Problem ................. 48 

Table 4-6: Maximum Objective Values for the Second BWR Optimization Problem................. 48 

Table 4-7: Percentage of Rod Types Used in Second BWR Optimization .................................. 51 

Table 5-1: Average Distance Comparison of IFBA and Gad Only .............................................. 52 

Table 5-2: Comparison of MOOGLE algorithm results to the Mustang Algorithm .................... 57 

Table 5-3: Distance between the three cases of the second BWR optimization problem ............ 58 

Table A-0-1: Number of Generations for Sensitivity Analysis Cases .......................................... 66 

Table A-0-2: Averaged Average Final Population Metrics for Sensitivity Analysis ................... 67 

Table A-0-3: Average Minimum Final Population Metrics for Sensitivity Analysis ................... 68 

Table A-0-4: Average Maximum Final Population Metrics for Sensitivity Analysis .................. 68 
 

 

  



www.manaraa.com

vii 

 

LIST OF FIGURES 

Figure 1-1: Fuel loading pattern for a nuclear reactor core [5]. ...................................................... 3 
Figure 1-2: Axial distribution of fuel bundle where each axial level represents one neuron. ........ 6 

Figure 2-1: Chromosome map for the lattice optimization problem for a 17x17 PWR  

                   assembly. ...................................................................................................................... 9 

Figure 2-2: First four solutions within initialization population for example problem. ............... 12 

Figure 2-3: Example of a two objective Pareto front [19]. ........................................................... 13 
Figure 2-4: Flow chart for binning survival process ..................................................................... 15 
Figure 2-5: Flow chart of parent selection process. ...................................................................... 17 
Figure 2-6: Reproduction selection method flow chart. ............................................................... 18 
Figure 2-7: Crossover Illustration. ................................................................................................ 20 

Figure 2-8: Overall flow chart for the MOOGLE algorithm. ....................................................... 22 

Figure 3-1: Rod zone region map for the PWR geometry problem. ............................................. 23 
Figure 3-2: Depiction of epsilon indicator distance test. .............................................................. 28 

Figure 3-3: Example of a combined solution front obtained from two different solution  

                   fronts. ......................................................................................................................... 29 
Figure 3-4: A: Axial power and void as functions of height. B: Positions of BWR  

                   axial regions for first and second BWR optimization problems. ............................... 31 

Figure 3-5: Rod zone region map for the first BWR optimization problem. ................................ 32 
Figure 3-6: Rod zone region map for the second BWR optimization problem. ........................... 33 

Figure 3-7: The R-factor is function of the surrounding rod power. ............................................ 35 
Figure 4-1: Comparison of a binned solution front to the Optimal Pareto Front for the  

                   optimization of a small number of rods at beginning of cycle. ................................. 36 

Figure 4-2: Base Case Solution Space Results. ............................................................................ 38 

Figure 4-3: IFBA Only Solution Space Results. ........................................................................... 39 
Figure 4-4: Gadolinium Only Solution Space Results. ................................................................. 40 
Figure 4-5: BP use in Optimizations using three different rod sets. ............................................. 41 

Figure 4-6: Average percentage of lattice solutions in final population using each  

                   rod type for the three rod set optimizations. .............................................................. 42 

Figure 4-7: Lattice Solution combining IFBA and gadolinium as burnable poisons.. ................. 43  
Figure 4-8: Lattice Solution using only IFBA as burnable poison. .............................................. 43 
Figure 4-9: Lattice Solution using only gadolinium as burnable poison. ..................................... 44 

Figure 4-10: Solution space of the BOC BWR lattice optimization problem. ............................. 45 
Figure 4-11: Lattice Solution with lowest R factor produced by MOOGLE Algorithm  

                     using 9 rod types for the BOC BWR optimization problem. ................................... 46 

Figure 4-12: Lattice Solution with lowest R factor produced by MOOGLE Algorithm  

                     using 9 rod types at a BOC Kinf value near 1.20 for the BOC BWR  

                     optimization problem. .............................................................................................. 46 
Figure 4-13: Number of Counts per bin for the second BWR problem eighteen rod case. .......... 48 
Figure 4-14: Number of counts per bin for the second BWR problem for the fifteen-rod case. .. 49 
Figure 4-15: Number of counts per bin for the second BWR problem for the twelve-rod case. .. 49 
Figure 4-16: Comparison of rod types used by the three different optimization cases for the  

                     second BWR optimization problem. ........................................................................ 50 
Figure 4-17: Percent of lattices containing each rod type for the second BWR  

                     optimization problem. .............................................................................................. 50 



www.manaraa.com

viii 

 

Figure 5-1: Solution Front and Solution space comparison between base and the IFBA 

                   only test cases. ........................................................................................................... 53 

Figure 5-2: Solution Front and Solution space comparison between base and the  

                   gadolinium only test cases.. ....................................................................................... 54 
Figure 5-3: Solution Front and Solution space comparison between base, ifba only, and  

                   gadolinium only test cases. ........................................................................................ 55 
Figure 5-4: Solution front curve for BOC BWR optimization problem. ...................................... 57 

Figure 5-5: Solution front for the 12, 15, and 18 rod cases of the second BWR optimization  

                   problem. ..................................................................................................................... 58 
Figure 5-6: Comparison of the Solution spaces covered by the three different rod cases. ........... 59 
Figure A-1: Selection Weight One Solution Space Results.......................................................... 69 
Figure A-2: Selection Weight Two Solution Space Results.. ....................................................... 70 

Figure A-3: Selection Weight Three Solution Space Results. ...................................................... 71 

Figure A-4: Selection Weight Four Solution Space Results. ........................................................ 72 
Figure A-5: Selection Weight Five Solution Space Results. ........................................................ 73 

Figure A-6: Selection Weight Six Solution Space Results. .......................................................... 74 

Figure A-7: Small Population One Solution Space Results.......................................................... 75 
Figure A-8: Small Population Two Solution Space Results. ........................................................ 76 
Figure A-9: First Alternate Mutation Rate One Solution Space Results.. .................................... 77 

Figure A-10: Second Alternate Mutation Rate Two Solution Space Results.. ............................. 78 
Figure A-11: Large PPF Bin Size Solution Space Results. .......................................................... 79 

Figure A-12: Large Peak Kinf Bin Size Solution Space Results.. ................................................ 80 
Figure A-13: Large EOC Kinf Bin Size Solution Space Results. ................................................ 81 
Figure A-14: Solution Front and Solution space comparison between base and first select  

                      weight test cases. ..................................................................................................... 83 

Figure A-15: Solution Front and Solution space comparison between base and second  

                      select weight test cases............................................................................................ 84 
Figure A-16: Solution Front and Solution space comparison between base and third  

                      select weight test cases............................................................................................ 85 
Figure A-17: Solution Front and Solution space comparison between base and fourth select   

                      weight test cases.. .................................................................................................... 86 
Figure A-18: Solution Front and Solution space comparison between base and fifth select 

                      weight test cases. ..................................................................................................... 87 

Figure A-19: Solution Front and Solution space comparison between base and sixth select 

                      weight test cases. ..................................................................................................... 88 
Figure A-20: Solution Front and Solution space comparison between base and first small  

                      population test cases. .............................................................................................. 90 

Figure A-21: Solution Front and Solution space comparison between base and second small  

                      population test case. ................................................................................................ 91 
Figure A-22: Solution Front and Solution space comparison between base and first alternate  

                      mutation rate cases. ................................................................................................. 93 
Figure A-23: Solution Front and Solution space comparison between base and second  

                      alternate mutation rate cases. .................................................................................. 94 

Figure A-24: Solution Front and Solution space comparison between base and the large  

                      PPF bin size case.. ................................................................................................... 96 



www.manaraa.com

ix 

 

Figure A-25: Solution Front and Solution space comparison between base and the large 

                      peak kinf bin size. ................................................................................................... 97 

Figure A-26: Solution Front and Solution space comparison between base and the large  

                      EOC kinf bin size. ................................................................................................... 98 
 

  



www.manaraa.com

x 

 

LIST OF ACRONYMS AND ABBREVIATIONS 

MWD/MTU   Mega-Watt day per metric ton uranium 

U.S. NRC  United States Nuclear Regulatory Commission 

PWR   Pressurized water reactor 

BWR   Boiling water reactor 

IFBA   Integral fuel burnable absorber 

GA    Genetic algorithm 

MOO   Multi objective optimization 

FORMOSA-P  Fuel Optimization for Reloads – Multiple Objectives by Simulated 

Annealing - PWR 

NCSU   North Carolina State University 

PPF   Power Peaking Factor 

BOL   Beginning of Life 

EOC   End of Cycle 

CPR   Critical Power Ratio 

SA   Sensitivity Analysis 

BP    Burnable Poison 



www.manaraa.com

  1 

 

Chapter 1 INTRODUCTION 

1.1 Overview 

 

Nuclear fuel management is the production, use, and disposal of fuel used by nuclear 

reactors. A principle focus of the field is the economical design of nuclear fuel assemblies that 

meet the operational and safety constraints of nuclear reactors. These designs must incorporate 

factors such as higher burnups, effective reactivity management, and the utilization of standardized 

fuel rod types in order to create a wide array of fuel bundles. Incorporation of these factors 

improves the cost of fuel bundles and nuclear reactors [1]. Safety constraints include limits on 

FΔH and Fq, the radial and axial power peaking, as well as limits on core reactivity. Other safety 

constraints include maintaining safety margins for issues such as minimum departure from 

nucleate boiling and dryout [1]. Often, satisfying these safety constraints forces sacrifices in cost 

factors. Therefore, core designers must strike the right balance; designing fuel that minimizes 

manufacturing costs, maximizes profits, and meets all safety constraints. 

The physical design of fuel assemblies does much for minimizing manufacturing costs and 

meeting safety constraints, however, these components are fixed. In order to maximize profits and 

ensure that safety constraints are met, core designers focus on the radial and axial distribution of 

fuel pins with varying enrichments [1]. Enrichment is the percentage of Uranium-235 contained 

in the fuel. Enrichments are limited to values less than 5% [2]. Although varying enrichments are 

used to control the power as much as possible, fresh fuel assemblies have a high reactivity. [1] 

Reactivity is the amount by which the nuclear multiplication factor, K, differs from a value of 

unity. New fuel assemblies have a high reactivity, valuable for powering a nuclear chain reaction 

for an extended period of time. The core reactivity however must be zero to maintain the core 
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multiplication factor at unity [3]. This means that methods must be implemented to control this 

reactivity. 

The first method for controlling reactivity is the use of poisons. Reactivity poisons in a 

pressurized water reactor (PWR) core include control rods in the reactor core, chemical shim added 

to the reactor moderator, and burnable poisons within fuel rods in the assemblies. Boiling water 

reactors (BWR) rely solely on control rods and burnable poisons in the fuel bundle. Both BWRs 

and PWRs use gadolinium as a burnable poison. Gadolinium is placed in select fuel rods and uses 

set combinations of Gd2O3-UO2 to form the control material [1]. IFBA, a coating of zirconium 

diboride (ZrB2) applied to the outside of fuel pellets, is another burnable poison specific to PWRs 

that was developed by Westinghouse for the VANTAGE-5 fuel [4]. Burnable poison placement is 

vital for fuel assembly design, as the same poison in different locations within a fuel assembly will 

have drastically different effects on pin powers and reactivity within the fuel assembly. 

Additionally, the cost of burnable poisons makes it desirable to use as little as possible to achieve 

the desired decrease in reactivity [1]. 

The second method for controlling reactivity is the use of complicated core loading 

patterns, such as the one shown in Figure 1-1, to utilize already “burnt” fuel with lower excess fuel 

reactivity in combination with new fuel to reduce the overall core average excess reactivity. 

Greater flexibility in the number of assemblies used in the core allows for greater management of 

the radial reactivity peaking and improves the burnup of all fuel used in the reactor core. Greater 

numbers of fuel assemblies can come at a steep price however as the numbers of specific rod types 

and enrichments increases. 

Designing a single, economical fuel assembly for a nuclear reactor that meets the 

operational and safety constraints is challenging. Designing multiple economically viable fuel 
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assemblies increases the difficulty further. This difficulty motivates the proposal of a new genetic 

algorithm, MOOGLE, for the design of nuclear fuel assemblies. 

 

Figure 1-1: Fuel loading pattern for a nuclear reactor core [5]. 

MOOGLE performs multiple objective optimizations for BWR and PWR fuel assemblies 

to design a suite of PWR and BWR fuel assemblies that meet design and safety constraints, while 

maintaining manufacturing feasibility. This allows for greater flexibility in nuclear core fuel reload 

patterns. MOOGLE improves upon currently existing optimization methods by utilizing fuel rod 

types, rather than pin types, as the decision variable. The use of fuel rod types facilitates the 

analysis of manufacturing costs versus fuel performance improvements through the addition of rod 

types, something that isn’t possible in codes that only optimize based upon fuel enrichment. 

Additionally, the use of fuel rod types as the decision variable allows for 3D models of fuel 

assemblies to be utilized. This improves upon many currently existing optimization codes that only 

improve a 2D fuel lattice.  
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1.2 Literature Review  

The survey of previous work shows genetic algorithms are not new to nuclear fuel 

management. Fuel lattices for PWRs and BWRs have been optimized using a variety of methods, 

including genetic algorithms. Three-dimensional assemblies have also been optimized. 

Martin-del-Campo et. al. developed a genetic algorithm capable of optimizing the 

enrichments and gadolinium concentrations in a BWR radial lattice. Their optimization sought to: 

(1) minimize the average lattice enrichment, (2) achieve an average gadolinium concentration G(x) 

equal to a target Gtarget, (3) achieve an infinite multiplication factor kinf equal to the target Kinf target, 

and (4) to attain a power peaking factor (PPF) lower than a limit value PPFmax, and if possible, to 

minimize it [6]. Information on kinf and PPF were obtained using the neutronic simulator Helios 

developed by Studsvik Scandpower [7]. 

 A multi-objective fitness function determined the value of different solutions in their 

optimization. Their fitness function is presented in Equation 1.1 [6]. The fitness function used by 

Martin-del-Campo et al is complex, involving finally tuned weights and sub equations to measure 

the fitness of each solution in the optimization. The use of fitness functions such as these is 

undesirable, because they essentially limit the algorithm to only being able to solve one problem. 

Should a new optimization objective be introduced, the entire fitness function must be re-tuned.  

𝐹(𝑥) = 𝐶 + 𝑤𝐸 ∗ 𝐸(𝑥) + 𝑤𝐺 ∗ ∆𝐺(𝑥) + 𝑤𝑝 ∗ (𝑃𝑃𝐹(𝑥) − 𝑃𝑃𝐹𝑚𝑎𝑥) + 𝑤𝑘 ∗ 𝐷𝑘(𝑥)      1.1 

Castillo, et. al. performed a comparison of several artificial optimization methods [8]. They 

sought to optimize the gadolinium and enrichment distributions in a fuel lattice for a boiling water 

reactor. The methods that were compared were Ant Colony Systems, Artificial Neural Networks, 

Genetic Algorithms, Greedy Search, and hybrid Path Relinking.  For the comparison, a common 

multiple objective optimization (MOO) cost function was shared between all optimization 
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methods. Their results depicted that Greedy Searches produced the best lattice designs, but GAs 

and Path Relinking were the two best methods in terms of global cost and reliability [8]. This 

shows that GAs remain a powerful optimization method.  

Rogers et al used adaptive simulated annealing (ASA) to optimize the radial pin 

enrichments and burnable poisons in a PWR fuel lattice [9]. ASA is an open source code written 

in C [10]. Simulated annealing is another artificial optimization method like GA’s. Simulated 

annealing is based on the natural process of materials cooling from high to low temperature, 

ultimately reaching the lowest achievable energy state [9]. 

 Rogers et al minimized the PPF of a 15 x 15 lattice in octant symmetry at beginning of 

life. Their optimization included standard design constraints such as prohibiting placement of 

gadolinium bearing pins in periphery locations and holding water rod and instrument tube locations 

fixed. Two heuristic rules were implemented that limited the locations of where gadolinium 

bearing pins could be placed based on a correlation between gadolinium placement and PPF [9].  

 Similar to Martin-del-Campo et al, Rogers et al used a complex fitness function in their 

optimization. Additionally, ASA evaluated a large number of solutions to optimize the different 

cases evaluated, and only produced one optimal solution for each case analyzed [9]. 

Ortiz-Servin et al combined a greedy search with a neural network to optimize the radial 

and axial zones of a BWR fuel bundle. Their method, GreeNN, uses a simple greedy search to 

optimize the radial distribution of a fuel lattice, and then uses a neural network to determine the 

optimal axial layout. The two-dimensional lattices were optimized with the simple goal of finding 

the lowest PPF for the lattice. The three-dimensional bundle optimization sought to maximize end 

of cycle (EOC) kinf while satisfying thermal limits and cold shutdown margin [11]. Casmo4 and 
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Simulate-3 were used to analyze the two dimensional lattices and three dimensional fuel bundles 

respectively [12] [13]. 

GreeNN successfully optimizes the reactor physics and safety limits of three-dimensional 

fuel bundles; however, GreeNN is not applicable to real world design problems. Figure 1-2 shows 

the axial layout used in the optimization, where each neuron is one axial fuel level [11]. Each color 

in Figure 1-2 describes a different zone in which fuel lattices may be placed. Based on the GreeNN 

system, each of these axial zones would be composed of a different two dimensional lattice. This 

means each fuel rod used in the fuel bundle is unique. This means high manufacturing costs for 

building fuel bundles designed by GreeNN. Manufacturing multiple fuel bundles based off of 

GreeNN for use in one reload batch would be economically impossible.  

                         
Figure 1-2: Axial distribution of fuel bundle where each axial level represents one neuron. 

1.3 Casmo4e 

All lattice physics calculations were performed using Casmo4e. Casmo-4 is a multigroup 

two-dimensional transport theory code for burnup calculations on BWR and PWR assemblies. The 

code geometry utilizes cylindrical fuel rods in a square pitch array and can handle a variety of fuel 

materials [12].  

The two-dimensional transport solution uses the method of characteristics and can be 

carried out using several different energy group structures. A seventy-energy group library 

covering the energy range 0 to 10 MeV stores the nuclear data. Casmo4e handles thermal 

expansion automatically and calculates resonance cross sections for each individual pin. A 

fundamental mode calculation incorporates leakage affects [12].  

Casmo-4 handles direct microscopic depletion of burnable absorbers in the main 

calculation. Depletion is tracked through each individual pin cell, and a predictor-corrector 
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approach calculates depletion, which greatly reduces the number of steps without reducing 

accuracy [12].  

Chapter 2 MOOGLE ALGORITHM DESCRIPTION 

The MOOGLE algorithm advances the field of nuclear fuel management by using rod types 

as the genes and rod maps to define the problem. For purposes of MOOGLE, the number of unique 

fuel rod types is a proxy for manufacturing cost. Binning of the solution space is also novel. 

MOOGLE provides a simple optimization framework readily available to solve a wide range of 

lattice optimization problems. By using rod types as the decision variable, and using a simple 

fitness method based on ranking, the MOOGLE algorithm can solve two-dimensional lattice 

optimization problems just as easily three-dimensional fuel assembly optimization problems 

without any changes to the algorithm. Binning of the solution space allows designers to see all of 

the different designs, as well as their strengths and weaknesses side by side in order to select the 

designs that work best for them within the core loading pattern. Additionally, use of rod types as 

the decision variable allows designers to see the tradeoffs between cost and performance for 

various numbers of rod types. These advancements make the MOOGLE optimization algorithm a 

novel contribution to the field of nuclear fuel management. 

2.1 Brief Description of Genetic Algorithms 

 

Genetic algorithms (GA’s) optimize a population of solutions based on the mechanics of 

genetics and natural selection. GA’s utilize historical population information to randomly search 

a solution space in a manner more efficient than a standard randomized walk. John Holland, K.A. 

De Jong, and colleagues first developed GAs at the University of Michigan in 1975. Dr. Holland’s 

students, with David Goldberg potentially being the most well-known, further developed and 

popularized the GA [14].  
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GAs apply to a range of problems such as game playing, function optimization, and search 

optimization of large scale combinatorial optimization problems like nuclear fuel lattice design or 

the well-known traveling salesman problem. GAs are adept for parallel programming, allowing a 

large section of the solution space to be searched quickly and provide a wide array of different 

solutions [14]. A disadvantage of GAs are that they provide no proof an optimum solution has 

been found [8]. Goldberg notes that GAs do not necessarily reach the best solution within the space 

and that combining GAs with another search method such as Tabu searches often yields better 

results than the GA search alone [14]. GAs also propagate undesirable solutions for several 

generations, which wastes computational resources [6]. 

2.2 Genes, Genomes, and Chromosomes 

Genetic algorithms utilize a genome. The genome, typically a string of characters or binary 

numbers, represents all the information of a solution, and can be modified to create new solutions 

through the manipulation of genes, which represent individualized aspects of the problem [14].  

The fuel assembly design problem is a placement problem where the optimal fuel rod type 

configuration for the fuel assembly is sought. The MOOGLE algorithm utilizes a gene pool and 

chromosome map to describe solution genomes. The gene pool describes the physical 

characteristics of the fuel rods used in the optimization. The gene pool also states which genes are 

allowed on which chromosomes. The chromosome map divides the geometry of the fuel assembly 

design problem into different radial regions that define where rod types may or may not be used 

in the solution of the design problem.  

Table 2-1 and Figure 2-1 present examples of the gene pool and chromosome map for the 

rod lattice optimization problem. Figure 2-1 represents a 17x17 PWR lattice in octant symmetry. 

By surveying Table 2-1 and Figure 2-1, the following observations can be made. First, by 
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designating the guide tubes and water rods as individual chromosomes with one allowed gene on 

that chromosome, these items are held fixed within the problem. Second, all fuel genes may be 

expressed in the chromosome 1. Third, the fuel gene containing gadolinium may not be expressed 

in chromosome 4.  These observations demonstrate the simplicity of describing a problem within 

the MOOGLE framework.  

Table 2-1: Example of Gene Descriptor List for the Lattice Optimization Problem. 

LOCATION GENE 

NUMBER 

FUEL  

TYPE 

ROD  

TYPE 

DESCRIPTION 

1 1 1 1 Fuel rod using 4.4% w/o uranium 

1 2 2 1 Fuel rod using 4.95% w/o uranium 

1 3 3 1 Fuel rod using 4.95% w/o uranium and 3% 

Gd. 

1 4 1 4 Fuel rod using 4.4% w/o uranium with IFBA 

coating. 

2 1 0 2 Guide Tube 

3 1 0 3 Water Rod 

4 1 1 1 Fuel rod using 4.4% w/o uranium 

4 2 1 2 Fuel rod using 4.95% w/o uranium 

4 3 1 4 Fuel rod using 4.4% w/o uranium with IFBA 

coating. 

     

2         

1 1        

1 1 1       

3 1 1 3      

1 1 1 1 1     

1 1 1 1 1 3    

3 1 1 3 1 1 1   

1 1 1 1 1 1 1 1  
4 4 4 4 4 4 4 4 4 

Figure 2-1: Chromosome map for the lattice optimization problem for a 17x17 PWR 

assembly. 

The MOOGLE algorithm’s simplicity makes it adept for solving a wide range of problems 

in nuclear fuel design. The example depicts a problem description for a 17x17 PWR fuel lattice; 

however, optimization of a BWR fuel bundle is just as easy using MOOGLE.  
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PWR fuel assemblies contain top and bottom blanket regions, as well as burnable absorber 

cutback regions; however, optimizing only the radial fuel lattice extending over the dominant 

central axial region is sufficient to optimize the entire assembly. Optimization of BWR fuel 

bundles, on the other hand, involves multiple radial fuel lattices extending over several axial fuel 

regions. MOOGLE can easily optimize both problems through the implementation of the gene 

pool which utilizes rod types and chromosome map.  

2.3 Population Size 

 Population sizes depend on a variety of factors including computational resources and 

problem complexity. The population of multiple solutions allows GA’s to search a large breadth 

of the solution space, and the population of solutions also helps the optimization to escape from 

local optimal solutions. If a GA uses too small of a population, convergence will occur too quickly; 

too large of population’s waste computational resources [15].  

MOOGLE calculates population size based off of the formula used in FORMOSA-P [16]. 

Population size is determined by the total number of possible genes. The total number of possible 

genes are the sum of all genes that may be expressed in a given gene location over the entire 

genome. For the lattice optimization problem, this is the sum of all the different rod types allowed 

in a given location for all rod positions. Population size is calculated as: 

𝑁𝑝𝑜𝑝 ≈ 10 ∗ √𝑁𝑔𝑒𝑛𝑒𝑠                          2.1 

These processes may be illustrated through our previous example. Returning to Table 2-1 

and Figure 2-1, four rod types are allowed in region 1, one in region two and three, and three in 

region four. There are thirty rod locations within region 1, one location within region 2, five 

locations in region 3, and nine locations within region 4. This means the total number of all 

possible genes is: 
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𝑁𝑔𝑒𝑛𝑒𝑠 = 30 ∗ 4 + 1 ∗ 1 + 5 ∗ 1 + 9 ∗ 3 = 153 

The square root of one hundred fifty-three, rounded to the nearest whole number is: 

√153  ≈ 12 

The population size for our example is then one hundred twenty. 

2.4 Initialization Population Creation 

Traditionally, random solutions from the available gene pool compose the initial 

population [14]. The MOOGLE algorithm does not follow this approach. Instead, the MOOGLE 

algorithm uses every homogeneous combination of chromosomes to form the initialization 

population.  

Figure 2-2 illustrates this for the example problem. As the figure shows, the first four 

solutions in the initial population would be comprised of the three possible genes allowed in 

chromosome 4, indicated in red, combined with the first gene allowed in chromosome 1, indicated 

in gold. The sequence then repeats, now with the second allowed gene in chromosome 1. 

Chromosomes 2 and 3 remain constant because only one gene is allowed in these locations. The 

total initialization population size for the example problem would be twelve solutions.  

 A homogenous or semi-homogeneous genome is likely to be close to the optimized 

solution for one of the optimization parameters, motivating this decision. Using a good, non-

random initialization population to produce the starting population significantly reduces the 

computational time over a random, relatively bad, initial population, especially for the lattice 

optimization problem.  

In fuel assembly design, twenty rods containing gadolinium is often given as the upper 

limit on the amount of burnable poison allowed in an entire fuel assembly [9]. By using a random 

starting population, most assemblies will have far more gadolinium rods than this upper maximum. 
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From an optimization standpoint, it makes no sense to waste computational resources by starting 

with an infeasible population of solutions. The use of an initialization population created through 

homogeneous combinations of chromosomes allows the optimization to have a better starting 

population without the need for overcomplicated heuristic settings or in-depth knowledge of the 

problem. 

1           1         

1 1          1 1        

1 1 1         1 1 1       

1 1 1 1        1 1 1 1      

1 1 1 1 1       1 1 1 1 1     

1 1 1 1 1 1      1 1 1 1 1 1    

1 1 1 1 1 1 1     1 1 1 1 1 1 1   

1 1 1 1 1 1 1 1    1 1 1 1 1 1 1 1  

1 1 1 1 1 1 1 1 1   2 2 2 2 2 2 2 2 2 

First solution generated     Second solution generated   
                    

1           1         

1 1          2 2        

1 1 1         2 2 2       

1 1 1 1        1 2 2 1      

1 1 1 1 1       2 2 2 2 2     

1 1 1 1 1 1      2 2 2 2 2 1    

1 1 1 1 1 1 1     1 2 2 1 2 2 2   

1 1 1 1 1 1 1 1    2 2 2 2 2 2 2 2  

3 3 3 3 3 3 3 3 3   1 1 1 1 1 1 1 1 1 

Third solution generated    Fourth solution generated   
Figure 2-2: First four solutions within initialization population for example problem. 

2.5 Survival 

In accord with Charles Darwin’s theory of evolution, that species evolve to become more 

fit for their environment, one designs their GA so that the population of solutions increases over 

time [14]. The literature review showed that a common method is to use a fitness based off of the 

optimization objectives [6] [9] [11]. Another common method is to use Pareto sorting to identify 

non-dominated solutions of value along the Pareto front [17]. The Pareto front represents the 
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optimal solution tradeoffs for competing objectives, with solutions on the Pareto front being non-

dominated by any other solutions to the optimization problem [18]. An example of a Pareto front 

is provided in Figure 2-3. 

 

Figure 2-3: Example of a two objective Pareto front [19]. 

 

MOOGLE uses a novel binning method for determining solutions of value, rather than the 

two previously discussed methods. The basis for this decision stems from the optimization of a 

PWR fuel lattice using two objective functions. The objective was minimizing peak pin power and 

minimizing reactivity at beginning of life. A Pareto front for the optimization was created, and as 

expected, showed a tradeoff between reactivity and pin power. Unexpectedly, none of the solutions 

developed were of particular value to a core designer. The solution lattice composed entirely of 

rods utilizing IFBA as a burnable poison achieves a low pin power and extremely low reactivity. 

Through Pareto selection, any solutions with a higher reactivity and pin power were eliminated, 

although these solutions are more desirable from a design standpoint. These unexpected 

optimization results motivated the creation of novel method for storing desirable solutions that 
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didn’t require complex tuning of a fitness function and preserved solutions that, although 

dominated by other solutions, still held value to a core designer.  

Figure 2-4 shows the steps of the binning survival process.  Calculate a fitness for each 

solution based on Equation 2.2. The number of bins is calculated using Equation 2.3. The bin in 

which each solution is placed is calculated using Equation 2.4. 

𝐹 = ∑ 𝑤𝑖𝑅𝑖
𝑁𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠

𝑖=1
               2.2 

Where wi is a user supplied importance ranking to that objective, and Ri is the rank of 

that solution for that optimization objective. 

𝑁𝑏𝑖𝑛𝑠 =
objmaximum−𝑜𝑏𝑗𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑤𝑖𝑑𝑡ℎ𝑜𝑏𝑗
      2.3 

Where objmaximum is the maximum value of the objective currently existing within the 

allowed solution space, objminimum is the minimum value for that objective that currently exists 

within the solution space, and widthobj is the desired width of each bin for that objective. 

𝐵𝑖𝑛# =
objscore−𝑜𝑏𝑗𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑤𝑖𝑑𝑡ℎ𝑜𝑏𝑗
      2.4 

 The desired solution space focuses and improves the optimization. During the use of a 

standard Pareto selection for the multi-objective optimization, it was found that limiting the desired 

solution space improved optimization performance by having fewer, yet more desirable results. 

Additionally, these reduced results cause fitter parents to be selected each generation. 
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Reducing computational time by only using the minimum number of bins required 

motivates the use of Equation 2.3. Two possible methods were identified for the binning process. 

The first method used a fixed number of bins, while the second method used a fixed bin size. Fixed 

bin sizes are used over a fixed number of bins because fixed bin sizes provide better resolution 

Figure 2-4: Flow chart for binning survival process 
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over the solution space by being able to add or remove needed bins. This enhanced resolution 

makes it easier to identify valuable solutions and provides clarity of the current solution space to 

the designer. 

The overall motivation for binning is to reduce the number of solutions that are kept in the 

optimization. All solutions within the same final bin should be thought of as having equal value. 

Using a fitness is simply a convenient means for choosing a solution to represent the binned space. 

2.6 Parent Selection 

Determining which solutions pass their genes on to the next generation is one of the core 

parts of a genetic algorithm [14]. The MOOGLE algorithm uses a somewhat complicated method 

to decide which solutions in the desired solution space should act as the parents to the next 

generation of solutions. A flow chart for the parent selection process can be found in Figure 2-5.  

 MOOGLE uses two methods for determining which solutions are passed on to the next 

generation. If the number of solutions in the desired solution space is less than the desired number 

of children, then all solutions will get the opportunity to pass on their genes to the next generation. 

When there are more possible parents than children though, a tournament is used to decide which 

solutions will get to reproduce. Tournaments are a common, highly effective method for 

determining which solutions are selected as the parents of the next generation [20]. Tournament 

methods are valuable for determining parents because they ensure the population advances towards 

more desirable fitness metrics while maintaining solution diversity through the randomness of 

pairings in the tournament brackets [21]. 
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Figure 2-5: Flow chart of parent selection process. 
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2.7 Reproduction 

 The final key element of GA’s so far undiscussed is generating new child solutions from 

the selected parent population. GA’s utilize crossover and mutation to create the next generation 

of children [14]. The three specific reproduction methods used in the MOOGLE optimization 

algorithm are crossover, single mutation, and double mutation. The process used for determining 

how parents reproduce in the MOOGLE algorithm is illustrated in Figure 2-6. 

 

Figure 2-6: Reproduction selection method flow chart. 

Crossover is the main method used to generate new solutions [14]. Crossover combines 

genes from two parents to create two new, unique child genomes. Crossover replicates a breeding 
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program by mating similar genomes that to one another. In breeding programs, it is beneficial to 

select animals with similar traits as mates for each other. Selecting mates with similar 

characteristics allows traits within the mates to be expressed faster than through random mating. 

This allows undesirable traits to be identified and removed faster [22]. 

This method has a second advantage. Crossing over two solutions that both have high 

fitness values but differing genomic structure rarely result in children of note [14]. Another way 

of saying this is that if two solutions are on differing peaks within the solution space, any children 

these solutions have are more likely to result in the valley between the solutions, rather on an 

undiscovered, higher peak than the parents.  

Crossover in the MOOGLE algorithm replicates a breeding program by mating the most 

similar genomes together. All parents designated for crossover are stored in a list. The first parent 

in the list is taken as the first parent to be used in the crossover pair. The rest of the parents in the 

crossover list are then examined to find the most suitable mate. For each parent, the genome is 

analyzed to determine how many genes it has in common with the first parent. This means having 

the same gene in the location within the genome. The genome that has the most genes in common 

with the first parent is chosen as the most suitable mate and second parent used in crossover. 

Once a suitable mate is chosen, genes are exchanged between the genomes to create new 

child genomes. Locations where genes differ in the genome of the two parents are identified as 

suitable locations to swap genes. Genes are swapped between the parents in half of the suitable 

locations, creating two new children from the genomes of the parents. This entire process is 

illustrated in Figure 2-7. The top row designates parents (rod lattices) that have been selected for 

crossover. The lattice designated as the crossover lattice is the first parent to be used in crossover. 

The blue squares in the lattices designated as 1st and 2nd potential mate denote locations where the 
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rod type differs from that of the crossover lattice. Because there are fewer differences between the 

1st potential mate and the crossover lattice versus the 2nd potential mate, the 1st potential mate is 

selected as the most suitable partner for crossover. The second row of lattices represent the children 

created in crossover. The green squares represent locations in which genes (rod types) were 

swapped between genomes. The 1st child lattice originally was the crossover lattice. The 2nd child 

lattice originally was the 1st potential mate.  Once a parent has successfully crossed over with 

another parent in the crossover list, both parents are deleted from the crossover list. 

0 
       

   0           0          

1 0 
      

   1 0          1 0         

1 0 0 
     

   1 0 0         1 0 0        

1 1 3 1 
    

   1 2 3 1        1 4 3 1       

1 1 1 1 7 
   

   1 2 3 3 7       1 4 1 3 7      

1 1 1 8 8 7 
  

   1 1 1 8 8 7      1 4 1 8 8 7     

1 1 3 8 8 1 1 
 

   1 1 3 8 8 1 1     1 3 3 8 8 1 1    

1 1 1 3 1 3 1 1    1 1 1 3 1 3 1 1    1 3 3 3 1 3 1 1   

1 5 1 7 1 1 7 1 7   1 5 1 7 1 1 7 1 7   1 5 1 7 1 1 7 1 7  

0 1 1 1 1 1 1 1 1 0  0 1 1 1 1 1 1 1 1 0  0 1 1 1 1 1 1 1 1 0 

First Parent  First Possible Mate  Second Possible Mate 

    0            0              

    1 0           1 0             

    1 0 0          1 0 0            

    1 2 3 1         1 1 3 1           

    1 1 1 3 7        1 2 3 1 7          

    1 1 1 8 8 7       1 1 1 8 8 7         

    1 1 3 8 8 1 1      1 1 3 8 8 1 1        

    1 1 1 3 1 3 1 1     1 1 1 3 1 3 1 1       

    1 5 1 7 1 1 7 1 7    1 5 1 7 1 1 7 1 7      

    0 1 1 1 1 1 1 1 1 0   0 1 1 1 1 1 1 1 1 0     

    First Child Solution   Second Child Solution     
Figure 2-7: Crossover Illustration.  

Mutation is the second factor to create new child populations. It is designed to replicate the 

random mutations that happens to genomes in nature [14]. Mutation works by selecting a gene 

within the genome to be altered. A new rod type is then inserted into the rod location from the list 
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of available rod types. For single mutation, this process occurs once, and for double mutation this 

process occurs twice. 

Initial and final mutation rates are selected by the user. The mutation rate increases every 

generation based on the FORMOSA-P  method [16]. Equations 2.5 and 2.6 are implemented within 

MOOGLE for determining the increase in the mutation rate each generation. The increase is based 

on the maximum number of possible generations for the optimization. This means that the target 

final mutation rate is often not achieved, as the solution space normally converges before the 

maximum number of generations is reached. 

pmute
n+1 = 1 − λg(1 − pmute

n )                                                  2.5 

 

Where pmute
n  and pmute

n+1 are the mutation rates for the n and n+1 generations and λg is a multiplier 

calculated as: 

λs = exp (
𝑙𝑛((1−𝑝𝑓𝑖𝑛𝑎𝑙)(1−𝑝0))

𝑁𝑔𝑒𝑛
)    2.6 

2.8 End of Optimization Conditions 

 There are two conditions that can be met for the MOOGLE algorithm to stop. The 

MOOGLE algorithm is considered converged when less than ten new solutions have been added 

to the solution space in the last five generations. If MOOGLE is considered converged, the 

optimization ends. The other condition is for the maximum number of generations to be reached. 

MOOGLE will end after that final generation. The maximum number of generations is calculated 

similarly to population size, using the equation: 

𝑁𝑚𝑎𝑥 _𝑔𝑒𝑛 ≈ 5 ∗ √𝑁𝑔𝑒𝑛𝑒𝑠                            2.7 

2.9 MOOGLE Flowchart 

Figure 2-8 provides a flowchart of how all individual components of the MOOGLE 

algorithm flow together. 
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Figure 2-8: Overall flow chart for the MOOGLE algorithm. 
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Chapter 3 MOOGLE ALGORITHM TESTING 

The MOOGLE algorithm was tested using two different assembly geometries, PWR and 

BWR. The PWR geometry was used to demonstrate the effectiveness of the binning method over 

Pareto sorting, to test the sensitivity of the algorithm to different parameters, and to analyze how 

the use of different BP combinations alter the results of the optimization. BWR geometry was used 

to compare the MOOGLE algorithm to a previously developed optimization algorithm, and to 

demonstrate the full fuel rod optimization capability and demonstrate the tradeoff between 

manufacturing complexity and increased performance through the addition of rod types.  

3.1 PWR Optimization Description 

The PWR geometry utilized a 17x17 fuel lattice in octant symmetry. The zone region 

map for the PWR optimization problem is provided in Figure 3-1. Two manufacturing design 

constraints were used to develop the rod zone regions: (1) The locations of guide tubes and water 

rods were held in fixed positions. (2) Gadolinium rods were restricted from edge pin cell 

locations. The rod types used in the optimization are provided in Table 3-1. Lattice designs were 

depleted for a burnup of 20 MWD/MTU. Reactor conditions at which the lattice designs were 

run is provided in Table 3-2. 

2         

1 1        

1 1 1       

3 1 1 3      

1 1 1 1 1     

1 1 1 1 1 3    

3 1 1 3 1 1 1   

1 1 1 1 1 1 1 1  

4 4 4 4 4 4 4 4 4 
Figure 3-1: Rod zone region map for the PWR geometry problem. 
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Table 3-1: Rod List for the PWR Lattice Optimization Problem. 

Location Gene Description 

1, 4 1 Fuel rod with 4.40 % w/o uranium 

1, 4 2 Fuel rod using 4.95% w/o uranium 

1 3 Fuel rod using 4.40% w/o uranium and 1% gadolinium 

1 4 Fuel rod using 4.95% w/o uranium and 1% gadolinium 

1 5 Fuel rod using 4.40% w/o uranium and 2% gadolinium 

1 6 Fuel rod using 4.95% w/o uranium and 2% gadolinium 

1 7 Fuel rod using 4.4% w/o uranium and 3% gadolinium 

1 8 Fuel rod using 4.95% w/o uranium and 3% gadolinium 

1, 4 9 Fuel rod using 4.40%   w/o uranium with IFBA coating. 

1, 4 10 Fuel rod using 4.95% w/o uranium with IFBA coating. 

2 1 Guide Tube 

3 1 Water Rod 

 

Table 3-2: Operating conditions used in Casmo4e for PWR lattice physics calculations. 

Power 110 

Moderator 600 

Fuel 820.5 

Boron 900 

Three experiments were conducted through the optimization of the PWR fuel assembly. 

The first experiment demonstrated how binning the solution space alters the results of an 

optimization over using a simple Pareto surface. The second experiment determined the sensitivity 

of the MOOGLE algorithm to different settings such as bin size or mutation rate. The third 

experiment determined how the inclusion of different burnable poison types affects the results of 

the optimization. To compare a solution binning method to a Pareto front method for carrying 

solutions forward in the optimization, a PWR fuel assembly was optimized at BOC, with the 

objectives of minimizing peak pin power and minimizing Kinf using a Pareto sorting method based 

on the method proposed by K.K. Mishra and Sandeep Harit [23]. 

The sensitivity of the MOOGLE algorithm was tested through the optimization of several 

different cases, each with different settings. Six cases tested the effect different selection weights 

had on the optimization results. Two cases tested how different population sizes affected the 
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optimization results. Two cases tested the effects of alternate mutation rates on the optimization 

results. The final three cases tested how bin size for various parameters affected the optimization 

results. All sensitivity test cases were compared to a standard base case. For each case, five runs 

were used to create the analysis dataset. 

The selection weights used for each case are presented in Table 3-3. The mutation rates for 

all cases are presented in Table 3-4. The bin sizes for all cases are presented in Table 3-5. Each 

case used equal survival rates set at a value of one. All cases except the population size test case 

used Equation 2.7 to calculate the population size and maximum number of generations.  The small 

population test size cases used Equation 3.1 to calculate population size. The first small population 

size test case also used equation to calculate the maximum number of generations.  

𝑁𝑝𝑜𝑝 = 5 ∗ √𝑁𝑔𝑒𝑛𝑒𝑠      3.1 

𝑁𝑔𝑒𝑛 = 2.5 ∗ √𝑁𝑔𝑒𝑛𝑒𝑠     3.2 

 Population sizes and maximum number of generations for the cases are presented in Table 

3-6. The allowed solution space for the selection weight analysis cases and BP analysis cases are 

presented in Table 3-8. Note that in Table 3-3 through Table3-8, if a case is not listed, its 

parameters are identical to the base case.  Since the solution space size was altered for the bin size 

test cases, convergence would happen before the population was fully optimized. For this reason, 

these cases were set to run for the average number of generations used by the base optimization 

case.  

To compare the effects of different burnable poisons on the optimization results, the PWR 

fuel lattice was optimized using BP rods that only contained IFBA, BP rods that only contained 

gadolinium, and then the full rod set which utilized both IFBA and gadolinium. The full rod set 
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case was the base case used in the sensitivity analysis. Population sizes and the maximum number 

of generations for the BP test cases are presented in Table 3-7. 

Table 3-3: Selection Weights Used in Sensitivity Analysis. 

Test Case Number Peak Pin Power Weight Peak Kinf Weight EOC Kinf Weight 

Base 1 1 1 

Selection Weight One 1 0 0 

Selection Weight Two 0 1 0 

Selection Weight Three 0 0 1 

Selection Weight Four 1 1 0 

Selection Weight Five 1 0 1 

Selection Weight Six 0 1 1 

 

Table 3-4: Initial and Final Mutation Rates Used in Sensitivity Analysis Optimizations 

Case Number Initial Mutation Rate Final Mutation Rate 

Base Case 25% 50% 

Alternate Mutation Rate One 50% 75% 

Alternate Mutation Rate Two 25% 75% 

 

Table 3-5: Bin Sizes Used in Sensitivity Analysis Optimizations 

Case 

Number 

Peak Pin 

Power Bin Size 

Peak Kinf 

Bin Size 

EOC Kinf 

Bin Size 

Base 0.01 0.01 0.01 

Large Power Bin Size 1 0.01 0.01 

Large Peak Kinf Bin Size 0.01 1 0.01 

Large End Kinf Bin Size 0.01 0.01 1 

 

Table 3-6: Population Sizes and Maximum Generations Used in Sensitivity Analysis 

Optimizations 

Case Number Population Size Maximum Number Generations 

Base Case 180 90 

Small Population One 90 45 

Small Population Two 90 90 
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Table 3-7: Population Sizes and Maximum Generations Used in BP Analysis Optimizations 

Case Number Population Size Maximum Number Generations 

Base Case 180 90 

IFBA Only 120 60 

Gadolinium Only 160 80 

 

Table 3-8: Allowed Solution Space for SA and BP Optimizations 

Parameter Minimum Allowed Value Maximum Allowed Value 

Peak Pin Power 0 1.15 

Peak Kinf 1.00 1.35 

End Kinf 1.00 1.10 

 

For the SA and BP analysis, the three objectives chosen were to minimize PPF, minimize 

peak kinf in the cycle, and to maximize the end of cycle (EOC) kinf at a 20 MWD/MTU burnup. 

Minimizing PPF improves the safety margin of the nuclear reactor. As previously mentioned, there 

are safety limits imposed on radial and axial peaking, FΔH and Fq. Minimizing the PPF provides 

greater margin between the operating conditions and the limiting values. Minimizing peak kinf 

and maximizing EOC kinf help to minimize the reactivity swing in the reactor core that occurs as 

the BP burns out of the fuel assembly. Additionally, minimizing the peak kinf value minimizes the 

excess reactivity of fuel assemblies, reducing the use of chemical shim and control rods. Finally, 

high EOC kinf values allow the fuel to remain in the core longer, maximizing burnup of the fuel 

assembly. 

Epsilon indicator distance testing was used to compare the base and test cases in the 

sensitivity analysis and BP analysis. [24]. The epsilon indicator distance is the total amount of 

distance one solution front must move in order to replace the points on another solution front.  The 

concept is illustrated in Figure 3-2. 

Epsilon indicator distance testing was performed by performing a test and base 

optimization with MOOGLE. The final solution spaces for the test and base cases were then 
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combined to create a combined solution front made up of the best solutions from both the test and 

base case results. An example of a combined solution front is presented in Figure 3-3. Solution 

fronts along the peak pin power front, peak kinf front, and EOC kinf front were created for the 

combined solution space, test solution space, and base case solution space. The distances between 

the points on the solution fronts for the test and base cases, and the combined solution fronts were 

then calculated. 

 

Figure 3-2: Depiction of epsilon indicator distance test. For the test, the epsilon 

indicator distance is the total sum of the distances each point on the non-optimal curve must 

move to replace the points on the optimal curve. 
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Figure 3-3: Example of a combined solution front obtained from two different 

solution fronts. 

Solution fronts for the objectives of the optimization were calculated as follows. The bin 

size for the selected optimization front was kept the same. The bin sizes along the other objective 

fronts are collapsed so that the solution space only exists along one objective. Then, through the 

binning selection process, the only remaining solutions represent the most desirable solutions, 

forming a solution front for the objective.  

The total distance from the combined solution front to an optimization run solution front 

is calculated by taking the distance from every point on the combined solution front to the nearest 

point on the optimization run solution front. To determine the minimum distance from a point on 

the combined solution front to the optimization run solution front, the distance from the point on 

the combined solution front to every point on the optimization run solution front is calculated. 

Distances between points are calculated using the equation: 
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𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √
(𝐶𝑝𝑜𝑤𝑒𝑟−𝑂𝑝𝑜𝑤𝑒𝑟)

2

𝐵𝑝𝑜𝑤𝑒𝑟
 +

(𝐶𝑝𝑒𝑎𝑘−𝑂𝑝𝑒𝑎𝑘)
2

𝐵𝑝𝑒𝑎𝑘
+

(𝐶𝐸𝑂𝐶−𝑂𝐸𝑂𝐶)2

𝐵𝐸𝑂𝐶
  3.3 

 Where C represents the point on the combined solution front, O represents the value for 

the point on the solution front being analyzed, and B represents the size of the bin for each of the 

three optimization categories. 

3.2 BWR Optimization Description 

The optimization of a BWR fuel bundle was the second geometry analyzed by the 

MOOGLE algorithm. To expedite run times, two-dimensional lattice slices of a BWR assembly 

were analyzed using Casmo4e.  Linear interpolation along a generic power curve filled in data 

between the lattice slices, creating a three-dimensional fuel bundle. BWR’s have a bottom peaked 

power curve due to the increased moderation in the bottom of the reactor. The equation for 

modeling reactor power as a function of height is [25]: 

𝑃𝑜𝑤𝑒𝑟(𝑧) =  𝑃𝑙𝑖𝑛𝑒𝑎𝑟 (
𝜋(𝐻+𝜆−𝑧)

𝐻𝑒
) sin (

𝜋(𝐻+𝜆−𝑧)

𝐻𝑒
)                              3.4 

Where 𝑃𝑙𝑖𝑛𝑒𝑎𝑟 is the linear heat flux, H is the physical height of the reactor, λ is an 

extrapolated distance, and He is the extrapolated height of the reactor calculated as [25]: 

𝐻𝑒 = 𝐻 + 2𝜆                                                           3.5 

For the optimization analysis, the linear power rate was 25.9588 w/gU. The reactor was set 

at a height of 12.25 feet, with an extrapolation distance of 3.097 feet. An already established void 

curve modeled void in the reactor core as a function of height. Moderator and fuel temperatures 

were determined using similar information. The power curve and void curve are provided in Figure 

3-4.  Figure 3-4 also shows the axial positions for the first and second BWR optimization problems.  

Two problems were optimized using the BWR geometry. The first problem compared the 

MOOGLE algorithm and another genetic algorithm for optimizing BWR fuel bundles, Mustang. 
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Mustang minimized the boiling transition factor a fuel assembly at BOC with and without a target 

Kinf value [26]. Crossover and mutation worked identically to MOOGLE in the Mustang 

algorithm. Mustang used a composite fitness function, rather than a binned desired solution space. 

Additionally Mustang used a standard tournament to decide which solutions carried forward to the 

next generation and which solutions died out. The first problem used a single axial rod zone and 

many fixed rod positions. The rod zone map for the first BWR problem is shown in Figure 3-5, 

representing a 10x10 BWR fuel bundle in half symmetry [27]. The rod types used in the 

optimization are presented in Table 3-9. Similar to the PWR fuel lattice optimization problem, 

design constraints were used to determine which rods were allowed in each rod zone region. The 

design constraints here are similar to the ones for the PWR problem: (1) Water rods are held in 

fixed locations, (2) rods containing gadolinium are prohibited from being placed on edge locations, 

(3) locations of vanishing rods are held fixed.  

 

Figure 3-4: A: Axial power and void as functions of height. B: Positions of BWR axial 

regions for first and second BWR optimization problems. 
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2          

3 6         

4 1 1        

5 7 1 1       

5 1 1 1 7      

5 1 1 8 8 7     

4 7 1 8 8 1 1    

5 1 1 1 1 1 1 1   

6 5 1 7 1 1 7 1 7  

2 3 5 7 7 7 7 7 5 3 
Figure 3-5: Rod zone region map for the first BWR optimization problem. 

Table 3-9: Rod List for the first BWR Optimization Problem. 

Location Gene Number Description 

1 1 3.95 w/o  

1 2 4.40 w/o 

1 3 4.60 w/o 

1 4 4.90 w/o 

1 5 3.95 w/o with 6.0 % gadolinium  

1 6 4.40 w/o 7.0 % gadolinium 

1 7 4.40 w/o 6.0 % gadolinium 

1 8 4.90 w/o 6.0 % gadolinium 

1 9 4.60 w/o 5.0 % gadolinium 

2 1 2.0 w/o 

3 1 3.20 w/o 

4 1 3.95 w/o 

5 1 4.40 w/o 

6 1 3.60 w/o 

7 1 4.90 w/o 

8 1 Water Rod 

 

The second BWR optimization problem demonstrated the MOOGLE algorithms ability to 

optimize fuel bundles using full fuel rods. As noted in Figure 3-4, the first BWR problem used a 

single enriched axial lattice with a bottom and top natural lattice to represent a fuel bundle. The 

second BWR problem uses three enriched axial lattices, in addition to a top and bottom natural 

lattice. The rod zone map for the second BWR fuel bundle optimization problem is provided in 

Figure 3-6, The rod types used in the optimization are presented in Table 3-10.  
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2          

2 1         

2 1 1        

2 1 1 1       

2 1 1 1 1      

2 1 1 3 3 1     

2 1 1 3 3 1 1    

2 1 1 1 1 1 1 1   

2 1 1 1 1 1 1 1 1  

2 2 2 2 2 2 2 2 2 2 
Figure 3-6: Rod zone region map for the second BWR optimization problem. 

The three objectives for the optimization were the minimization of the bundle boiling 

transition factor (BTF), minimization of peak Kinf for the fuel bundle, and maximizing EOC 

reactivity for the fuel bundle.  

The BTF, also known as the R-factor, is a measure of a fuel bundle’s sensitivity to dryout 

based on changes in rod power and is a function of the relative rod powers within fuel bundles. It 

is used in critical power ratio (CPR) calculations. A general form for the BTF is provided by Haulin 

[28] and is based on the XL boiling length correlation [29]. For this study it is, calculated using 

the equation: 

𝑅 =
√𝑃+𝑤𝑠√∑ 𝑃𝑠+𝑤𝑐√∑ 𝑃𝑐

1+𝑤𝑐𝑁𝑐+𝑤𝑠𝑁𝑠
+ 𝐴                                          3.6 

Where P is the local integrated rod power, Ps is the integrated rod power of rods on the 

sides of the rod being examined, Pc is the integrated rod power for rods on the corner of the current 

rod. Ws and Wc are weights for the corner and side rods. Ns and Nc are the number of corner and 

side rods. A is an additive constant for the current rod location [28]. Figure 3-7 shows all rod 

powers that affect the calculated BTF of a rod in a single location.  

 The additive constant is used to relate relative rod power to the rods sensitivity to dryout 

and the values are measured by the assembly manufacturer. Additive constants are determined 

through laboratory testing of rod heat fluxes and fitting the experimental data to CPR correlations. 
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Values for the additive constants vary for each assembly design [28]. The additive constants and 

BTF equation used in this analysis are based on the XL boiling length correlation [29].  

 

Table 3-10: Rod List for the second BWR Optimization Problem. 

Rod 

Zone 

Rod 

Number 

First Axial 

Zone 

Second 

Axial Zone 

Third Axial 

Zone 

Case 

One 

Case 

Two  

Case 

Three 

1 1 2.00 w/o 2.00 w/o 2.00 w/o X X X 

1 2 3.20 w/o 3.20 w/o 3.20 w/o X X X 

1, 2 3 4.40 w/o 4.40 w/o 4.40 w/o X X X 

1 4 3.95 w/o 3.95 w/o 3.95 w/o X X X 

1 5 3.60 w/o 3.60 w/o 3.60 w/o X X X 

2 6 4.90 w/o 4.90 w/o 4.90 w/o X X X 

2 7 4.60 w/o 4.60 w/o 4.60 w/o X X X 

2 8 4.40 w/o  

6.0 % Gad  

4.40 w/o  

6.0 % Gad 

4.40 w/o  

6.0 % Gad 

X X X 

2 9 4.60 w/o  

5.0 % Gad 

4.60 w/o  

5.0 % Gad 

4.60 w/o  

5.0 % Gad 

X X X 

2 10 4.40 w/o  

6.0 % Gad 

4.90 w/o 4.90 w/o X X X 

2 11 4.90 w/o 4.40 w/o  

6.0 % Gad 

4.90 w/o X X X 

2 12 4.90 w/o 4.90 w/o 4.40 w/o  

6.0 % Gad 

X X X 

2 13 4.40 w/o  

6.0 % Gad 

4.60 w/o 4.60 w/o X X  

2 14 4.60 w/o 4.40 w/o  

6.0 % Gad 

4.60 w/o X X  

2 15 4.60 w/o 4.60 w/o 4.40 w/o  

6.0 % Gad 

X X  

2 16 4.40 w/o  

6.0 % Gad 

4.40 w/o 4.40 w/o X   

2 17 4.40 w/o 4.40 w/o  

6.0 % Gad 

4.40 w/o X   

2 18 4.40 w/o 4.40 w/o 4.40 w/o  

6.0 % Gad 

X   

3 19 Water Rod Water Rod Water Rod X X X 

 

Integrated rod powers are calculated using the equation: 

𝑃𝑟𝑜𝑑 =  
∑ 𝑉𝑖𝑃𝑖𝑁

𝑖=1

∑ 𝑉𝑖𝑁
𝑖=1

                                                       3.7 
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Where Vi is axial volume in axial location i and Pi is power in axial location i. 

 

 

 

   

  

 

Figure 3-7: The R-factor is function of the surrounding rod power. 

 

Chapter 4 EXPERIMENTAL RESULTS 

Presented below are the comparison of binning versus Pareto sorting, the BP analysis cases, 

and the second BWR optimization problem. The results of the SA may be found in Appendix One: 

Sensitivity Analysis Results and Discussion. The results of these cases are omitted from the main 

body of the report for brevity. 

4.1 PWR Geometry Solution Front Test Case 

The first category and case tested with the MOOGLE algorithm was a comparison of Pareto 

front sorting versus the bin sort method used. Solution fronts for the two selection methods are 

presented in Figure 4-1. 

PC1 
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Figure 4-1: Comparison of a binned solution front to the Optimal Pareto Front for the 

optimization of a small number of rods at beginning of cycle. 

Figure 4-1 shows that the Pareto Front method for selecting solutions produced a better 

minimum peak pin power than the solution front binning method. However, the binning method 

produced comparable results to the Pareto Front sorting method in the overlapping regions. 

Additionally, binning of the solution front produced a far wider range of usable solutions than the 

Pareto Front method. 

4.2 Burnable Poison Analysis Results 

The number of generations for the runs of the IFBA only and gadolinium only cases are presented 

in Table 4-1. The average number of solutions per bin and associated error for the average value 

for the optimization using only IFBA and gadolinium as BP is presented in Figure 4-2. The average 

number of solutions per bin and associated error in the average number of solutions for the 

optimization using only IFBA for BP is presented in Figure 4-3. The average and error in counts 

per bin for the gadolinium only case are presented in Figure 4-4. Figure 4-5 shows the burnable 
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poison distribution for the base, IFBA only, and gadolinium only optimization cases, and the 

average number of burnable poison rods used in each optimization. Figure 4-6 shows the 

percentage of solutions that use each rod type.   

Table 4-1: Number of Generations for Burnable Poison Analysis 

Analysis Name Case Number 

 1 2 3 4 5 Average 

Base 66 71 58 52 62 62 

IFBA Only 62 54 62 59 61 60 

Gadolinium Only 37 63 33 61 78 55 
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Figure 4-2: Base Case Solution Space Results. A: Average number of solutions per bin in the 

solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure 4-3: IFBA Only Solution Space Results. A: Average number of solutions per bin in the 

solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure 4-4: Gadolinium Only Solution Space Results. A: Average number of solutions per bin 

in the solution space. B: Error in the average number of solutions per bin. 

 

A B 
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Figure 4-5: BP use in Optimizations using three different rod sets. A: BP distribution using 

IFBA and Gad. B: BP rod counts using IFBA and Gad. C: BP distribution using IFBA only. D: 

BP rod counts using IFBA only. E: BP distribution using Gad only. F: BP rod counts using Gad 

only. 

B A 

D C 

E F 
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Figure 4-6: Average percentage of lattice solutions in final population using each rod type 

for the three rod set optimizations. A: IFBA and Gad rod set. B: IFBA Only rod set, C: 

Gadolinium only rod set 

It is interesting to note that when both IFBA and gadolinium are used as burnable poisons, 

the gadolinium rods are used in relatively even amounts. Rod 4 is used more than any other 

gadolinium rod though. When only gadolinium is allowed as the burnable poison however, there 

is a clear preference. Gadolinium rods with an accompanying uranium enrichment of 4.40% are 

used more often than rods with an enrichment of 4.95%. Additionally, rod 4 is the least used 

gadolinium rod.  

 A solution containing both IFBA and gadolinium as the BP is presented in Figure 4-7. A 

solution containing only IFBA as the BP is presented in Figure 4-9. A solution containing only 

gadolinium as the BP is provided in Figure 4-10. 

 

 

 

A B C 
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Figure 4-7: Lattice Solution combining IFBA and gadolinium as burnable poisons. The 

solution had a peak pin power of 1.132, peak kinf of 1.04483, and end kinf of 1.03618. 
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Figure 4-8: Lattice Solution using only IFBA as burnable poison. The solution had a peak pin 

power of 1.108, peak kinf of 1.04773, and end kinf of 1.03935. 
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Figure 4-9: Lattice Solution using only gadolinium as burnable poison. The solution had a 

peak pin power of 1.141, peak kinf of 1.15309, and end kinf of 1.15309. 

4.3 BOC BWR Problem 

 The BOC optimization of a BWR fuel bundle’s BTF occurred over 26 generations.  The 

solution space of the optimization is presented in Figure 4-10. The final population metrics for the 

optimization are presented in Table 4-2. The Mustang algorithm optimized two different cases. In 

the first case, no constraint was placed on kinf values for the optimization, so the objective was to 

simply achieve the lowest BTF value possible. The second case minimized BTF at a target BOC 

kinf value of 1.2. The most comparable results produced by MOOGLE are presented here. The 

minimum BTF solution is presented in Figure 4-11. The solution with the best BTF value at a BOC 

kinf of 1.2 is shown in Figure 4-12. 
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Figure 4-10: Solution space of the BOC BWR lattice optimization problem. 
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3.20 4.40 4.60 4.90 4.40 4.60 4.90 4.60 4.90  

2.00 3.20 4.40 4.90 4.90 4.90 4.90 4.90 4.40 3.20 
Figure 4-11: Lattice Solution with lowest R factor produced by MOOGLE Algorithm using 

9 rod types for the BOC BWR optimization problem. 
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Figure 4-12: Lattice Solution with lowest R factor produced by MOOGLE Algorithm using 

9 rod types at a BOC Kinf value near 1.20 for the BOC BWR optimization problem. Note: 

The first row indicates rod enrichment, the second row indicates rod gadolinium concentration. 

Table 4-2: Minimum, Maximum, and Average Parameter Values for BOC BWR 

Optimization 

Parameter Average Value Minimum Value Maximum Value 

R factor 1.0485 0.9987 1.0917 

Peak Kinf 1.163 1.024 1.361 
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4.4 Depletion and Multiple Zone BWR Problem 

 The number of generations for the three different rod numbers used for the second BWR 

problem can be found in Table 4-3. The number of counts per bin for the eighteen-rod case are 

shown in Figure 4-13. The number of counts per bin for the fifteen-rod case are shown in Figure 

4-14. The number of counts per bin for the twelve-rod case are shown in Figure 4-15. Average 

values for the optimization objectives are presented in  

Table 4-4. Minimum values for the optimization objectives are presented in Table 4-5. Maximum 

values for the optimization objectives are given in Table 4-6. 

Table 4-3: Number of Generations for the Second BWR Optimization Problem 

Number of Rods Number of Generations 

18 81 

15 40 

12 93 

 

Table 4-4: Average Objective Values for the Second BWR Optimization Problem 

Number of Rods BTF Peak Kinf EOC Kinf 

18 1.063 1.239 1.091 

15 1.065 1.226 1.077 

12 1.061 1.231 1.085 
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Figure 4-13: Number of Counts per bin for the second BWR problem eighteen rod case. 

Table 4-5: Minimum Objective Values for the Second BWR Optimization Problem 

Number of Rods BTF Peak Kinf EOC Kinf 

18 1.012 1.086 1.051 

15 1.021 1.093 1.053 

12 1.013 1.087 1.050 

 

Table 4-6: Maximum Objective Values for the Second BWR Optimization Problem 

Number of Rods BTF Peak Kinf EOC Kinf 

18 1.100 1.374 1.141 

15 1.098 1.344 1.100 

12 1.099 1.354 1.118 
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Figure 4-14: Number of counts per bin for the second BWR problem for the fifteen-rod 

case. 

 
Figure 4-15: Number of counts per bin for the second BWR problem for the twelve-rod 

case. 
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 The breakdown of rod use is shown in Figures 4-16 and 4-17, and Table 4-7. Figure 4-16 

and Table 4-7 shows how the percentage each rod type makes up in the optimization for the three 

different cases. Figure 4-17 shows the percentage of lattices containing each rod type. It is 

interesting to note that rods using gadolinium in the bottom axial zone are used in preference over 

rod types containing gadolinium in upper zones. The figures show that rods containing gadolinium 

in the lowest zone of the rod are used more than other rod types containing gadolinium. 

Figure 4-16: Comparison of rod types used by the three different optimization cases for the 

second BWR optimization problem. 

 

 
Figure 4-17: Percent of lattices containing each rod type for the second BWR optimization 

problem. 
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Table 4-7: Percentage of Rod Types Used in Second BWR Optimization  

Rod 

Number 

Percent of total rods used in 

Optimization 

 18 Rod Case 15 Rod Case 12 Rod Case 

1 16 25 19 

2 5 6 12 

3 5 2 2 

4 13 2 21 

5 5 2 2 

6 18 16 13 

7 7 17 9 

8 1 1 2 

9 1 1 1 

10 1 2 1 

11 1 1 2 

12 11 14 17 

13 1 1  

14 1 1  

15 8 7  

16 1   

17 1   

18 6   
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Chapter 5 Analysis of Results 

Two methods are employed to compare different optimization cases to each other. The first 

method is epsilon indicator distance testing, in which an optimal solution front composed of the 

five base and test runs is compared to the ten individual optimizations. The second method 

compares the solution spaces explored by the test and base optimization cases.   

5.1 Burnable Poison Analysis Discussion 

Table 5-1 gives the average distances between the individual optimization runs of the base 

and test case and the optimal solution front composed of these cases. Figure 5-1 compares the 

solution front and solution spaces of the IFBA only test and base cases. Figure 5-2 compares the 

solution front and solution spaces of the gadolinium test and base cases. Figure 5-3 directly 

compares the solution fronts and solution spaces of the IFBA only, gadolinium only, and base case 

which used both gadolinium and IFBA as BP. 

 Table 5-1: Average Distance Comparison of IFBA and Gad Only 

Case Name Case Part Average Distance for EOC Kinf Range 

 
 1.02 – 1.04 1.04 – 1.06 1.06 – 1.08 1.08 – 1.10 Total 

IFBA 

Test 2.69 8.88 14.31 67.80 93.67 

Base 7.08 13.35 14.44 14.79 49.66 

Difference -4.39 -4.48 -0.13 53.00 44.01 

Gadolinium 

Test NA NA 43.67 31.07 74.74 

Base 3.78 9.73 14.62 14.61 42.74 

Difference 3.78 9.73 29.05 16.45 32.00 
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Figure 5-1: Solution Front and Solution space comparison between base and the IFBA only 

test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case only. 2 is 

filled by test case only. 3 is filled by both cases. 
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Figure 5-2: Solution Front and Solution space comparison between base and the 

gadolinium only test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base 

case only. 2 is filled by test case only. 3 is filled by both cases. 
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Figure 5-3: Solution Front and Solution space comparison between base, ifba only, and 

gadolinium only test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base 

case only. 2 is filled by ifba and base. 3 is filled by gadolinium and base. 4 is ifba only, 5 is gad 

only, and 6 is all three cases.   
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It is important again to note that the results presents in Figure 5-1 through Figure 5-3 

represent the desired solution space. This means that it would be incorrect to assume that because 

no solutions are presented for the gadolinium case that have an EOC kinf value less than 1.04, that 

the use of gadolinium makes such an EOC kinf value impossible. What this indicates, is that no 

solutions exist that meet the requirements on PPF or peak kinf.  

Peak kinf and EOC kinf values are generally correlated, with a high peak kinf indicating a 

high EOC kinf, and a low peak kinf indicating a low EOC kinf. Gadolinium is a strong burnable 

poison; a single fuel rod containing gadolinium has a noticeable impact on PPF and kinf. Several 

gadolinium rods are required to achieve low EOC Kinf results. These rods will have a strong effect 

on PPF. The reason why no solutions using only gadolinium are presented for lower EOC kinf 

regions is that designs at these EOC kinfs violate the limits on PPF placed on the optimization. 

This same reasoning likely explains why higher EOC IFBA solutions are not found.   

Figure 5-3 illustrates the topics of the previous paragraph well. Figure 5-3 also shows that 

by combining IFBA and gadolinium as a burnable poison, one gets significantly improved control 

over reactivity without having to sacrifice on PPF. The large impact gadolinium has can be used 

for course reactivity control, with IFBA added to provide a fine tuning.  

5.2 BOC BWR Optimization Discussion 

 Figure 5-4 provides a tradeoff between BTF and Kinf at BOC. The tradeoff curves 

displays the behavior expected, that minimized BTF and minimized Kinf come at the cost of one 

another. The solution properties of the two solutions presented in Figure 4-11 and Figure 4-12, as 

well as the results of the Mustang algorithm are presented in  

Table 5-2.  
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Figure 5-4: Solution front curve for BOC BWR optimization problem. 

Table 5-2: Comparison of MOOGLE algorithm results to the Mustang Algorithm 

Optimization Code R factor Peak Kinf 

MOOGLE 0.9987 1.3615 

MOOGLE 1.016 1.1997 

Mustang 1.001 1.1074 

Mustang 1.029 1.1994 

 

Mustang was tested using two different cases. In the first case, no constraint was placed 

on kinf, and the goal was simply to achieve the lowest possible BTF value possible This is 

shown in line three of Table 5-2. The second case was to minimize BTF with a target Kinf of 1.2. 

These results are shown in row four of Table 5-2.  MOOGLE, in a single run, produced results 

that bested both of the Mustang cases. MOOGLE found an overall lower BTF value than the 

unconstrained Mustang case, as shown in row one of Table 5-2. Additionally, at a BOC kinf 

value of 1.2, MOOGLE produced a lower BTF value, as seen by comparing rows two and four of 
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Table 5-2. This clearly demonstrates that MOOGLE improves on its predecessor the Mustang 

algorithm. 

5.3 Depletion and Multiple Zone BWR Problem 

 A comparison of the solution front of the three different rod counts provided in Figure 5-5. 

Distances between the solution fronts and an optimal front created from the three different cases 

is provided in Table 5-3. A comparison of the solution spaces covered by the three cases is 

provided in Figure 5-6. 

 
Figure 5-5: Solution front for the 12, 15, and 18 rod cases of the second BWR optimization 

problem. 

Table 5-3: Distance between the three cases of the second BWR optimization problem 

Rod Number Average Distance for EOC Kinf Range 

 1.02 – 1.04 1.04 – 1.06 1.06 – 1.08 1.08-1.10 Total 

18 3.020 8.533 14.199 5.474 31.226 

15 20.236 0.371 12.272 NA 32.879 

12 2.923 7.154 9.445 12.526 32.048 
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Figure 5-6: Comparison of the Solution spaces covered by the three different rod cases. 1 

indicates bin is only filled by 18 rod case. 2 indicates bin is fill by 15 and 18 rod case. 3 indicates 

bin filled by 12 and 18 rod case. 4 indicates only filled by 15 rod case. 5 indicates bin filled only 

by 12 rod case. 6 indicates bin is filled by all three cases. 

 As Figure 5-5, Figure 5-6, and Table 5-3 show, the results are not very consistent between 

the three different cases. Such behavior should not be expected because the twelve and fifteen rod 

cases are subsets of the eighteen rod case, meaning that the fifteen rod case should show the same 

or improved behavior on the twelve rod case, and the eighteen rod case should do the same. 

Unfortunately, this is the result of an inconsistent analysis caused by problems with the torque job 
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submission script on the cluster used. A proper analysis of the three results would likely show 

much more consistent results between the three different rod analyses.  

 This does not mean that the three analyses are of no value whatsoever though. What they 

do show is that the rod types fifteen and eighteen rod cases do not significantly improve the results 

of the optimization. This demonstrates the MOOGLE algorithms ability to allow core designers to 

see the improvements, and subsequent increase in manufacturing costs, that the use of additional 

rod types causes. In this case, the six additional rod types added do not significantly improve the 

optimization. In this case, the core designer would feel confident knowing that they can use the 

simplest optimization results and still get excellent performance from the designed fuel. 

 

Chapter 6 Conclusions 

Solution Front Comparison 

 The results show that binning the solution front produces a much wider array of solutions 

than a Pareto front sorting method. This allows designers to get a wider range of practical solutions 

to their design problem than if they used the Pareto front method. 

Sensitivity Analysis 

 The results of the SA depict that the MOOGLE algorithm is sensitive to various settings. 

The SA shows that uniform selection weights allow the optimization to search the widest solution 

space possible. This wider solution space search allows for better solutions to be developed. 

Altering these weights can reduce the effectiveness of the MOOGLE optimization. Additionally, 

MOOGLE requires a large population and high number of generations to effectively search the 

solution space for complicated problems. The mutation rate test cases show that crossover is the 

most effective method for generating new solutions, and that higher mutation rates do not benefit 

the optimization. Finally, the results of the large bin size test cases show that not binning some 
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parameters does not affect or improves the results of the optimization. As shown by the 

optimization though, binning all parameters still provides valuable optimization results. 

Burnable Poison Analysis 

 The burnable poison analysis shows that combining IFBA and gadolinium as burnable 

poisons in fuel assemblies produces more optimal assemblies than using solely IFBA or 

gadolinium. This goes with the general design principle that greater flexibility in the number of 

rod types allows for better designs to be developed.  

 This analysis also demonstrates the MOOGLE algorithms ability to provide designers with 

the cost-benefit analysis of using additional rod types. For this case, it demonstrates that using 

additional rod types provides better solutions than using only one type of burnable poison.  

First BWR Optimization Problem 

 The first BWR optimization indicates that the MOOGLE algorithm improves upon its 

predecessor, the Mustang algorithm. In a single optimization, MOOGLE was able to produce 

better results than those found by the Mustang algorithm. The results found by the Mustang 

algorithm also required two separate runs, instead of the single optimization run used by 

MOOGLE.  

Second BWR Optimization Problem 

 The second BWR optimization demonstrates the MOOGLE algorithms ability to show how 

the addition of rod types affects the results of the optimization. In this case, additional rod types 

did not significantly improve the optimization. It also shows the clear distribution of how each rod 

type is used within the optimization, allowing for rod designers to see what rods improve the 

optimization and are widely used, and which ones are rarely used or do not largely contribute to 

improving the solutions. Being able to determine rods of value and rods that do not improve the 
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optimization allows rod designers to reduce manufacturing costs by not using the fewest number 

of rod types and not including results that do not improve the optimization. 

Overall Conclusions 

 The MOOGLE algorithm has been demonstrated as a powerful tool for the multi-objective 

optimization of PWR fuel assemblies and BWR fuel bundles. It improves upon the field of nuclear 

fuel management by providing designers with a wide array of valuable solutions for use in nuclear 

power reactors. Additionally, it allows designers to visualize the economic tradeoffs between 

improved performance and manufacturability through the addition of additional fuel rod types. 
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 The number of generations over which all sensitivity analysis optimization cases were run 

can be found in Table A-0-1.  

Table A-0-1: Number of Generations for Sensitivity Analysis Cases 

Analysis Name Case Number 

 1 2 3 4 5 Average 

Base 66 71 58 52 62 62 

First Selection Weight 59 60 56 79 72 65 

Second Selection Weight 53 76 69 70 73 68 

Third Selection Weight 48 61 50 48 62 54 

Fourth Selection Weight 62 86 79 54 74 71 

Fifth Selection Weight 61 57 56 56 61 58 

Sixth Selection Weight 55 61 55 83 64 64 

First Small Population 47 47 47 47 47 47 

Second Small Population 76 45 64 92 86 73 

First Alternate Mutation 81 55 66 54 78 61 

Second Alternate Mutation 53 47 59 49 58 53 

Large Power Bin Size 62 62 62 62 62 62 

Large Peak Kinf Bin Size 62 62 62 62 62 62 

Large End Kinf Bin Size 62 62 62 62 62 62 

 

Table A-0-1 shows that the average number of solutions for the base case was 62. The case 

with the shortest average number of generations was the first small population test. This is because 

Equation 3.2 was used to calculate the maximum number of generations allowed, making the 

maximum number of generations 47. This indicates that the first small population test potentially 

suffered from premature convergence. The smallest average number of generations using equation 

2.2, the normal method for determining the maximum number of generations was the second 

alternate mutation rate test. 

The case that required the highest average number of generations was the second small 

population test. This makes sense, as extra generations are required to compensate for the lack of 
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solutions in the optimization population. The case with the second highest average number of 

generations was the fourth selection weight case. 

 The average final population metrics averaged over the five runs for each analysis are 

presented in Table A-0-2. The average minimum values for the final population objectives may be 

found in Table A-0-3. Table A-0-4 presents the average maximum values of the optimization 

objectives for the final population for each of the sensitivity analysis cases.  

Table A-0-2: Averaged Average Final Population Metrics for Sensitivity Analysis 

Analysis Name Peak Pin Power Peak Kinf  EOC Kinf 

Base 1.112 1.199 1.072 

First Selection Weight 1.111 1.199 1.072 

Second Selection Weight 1.112 1.197 1.071 

Third Selection Weight 1.113 1.201 1.073 

Fourth Selection Weight 1.112 1.197 1.071 

Fifth Selection Weight 1.112 1.199 1.072 

Sixth Selection Weight 1.112 1.199 1.072 

First Small Population 1.114 1.205 1.072 

Second Small Population 1.114 1.200 1.079 

First Alternate Mutation 1.113 1.198 1.072 

Second Alternate Mutation 1.112 1.200 1.072 

Large Power Bin Size 1.091 1.179 1.067 

Large Peak Kinf Bin Size 1.105 1.133 1.070 

Large End Kinf Bin Size 1.107 1.197 1.082 

 

 The solution space for the base and sensitivity analysis test cases are presented in Figure 

A-1 through Figure A-6. Each figure presents the average number of solutions produced per bin, 

and the error in that average. Note that the bin sizes have been altered for readability and differ 

from the bin sizes used in the optimization. 
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Table A-0-3: Average Minimum Final Population Metrics for Sensitivity Analysis 

Analysis Name Peak Pin Power Peak Kinf  EOC Kinf 

Base 1.047 1.042 1.035 

First Selection Weight 1.047 1.039 1.033 

Second Selection Weight 1.045 1.039 1.032 

Third Selection Weight 1.046 1.042 1.034 

Fourth Selection Weight 1.047 1.042 1.033 

Fifth Selection Weight 1.047 1.036 1.033 

Sixth Selection Weight 1.045 1.039 1.034 

First Small Population 1.047 1.054 1.038 

Second Small Population 1.047 1.047 1.036 

First Alternate Mutation 1.045 1.040 1.033 

Second Alternate Mutation 1.045 1.044 1.034 

Large Power Bin Size 1.050 1.041 1.030 

Large Peak Kinf Bin Size 1.051 1.039 1.033 

Large End Kinf Bin Size 1.046 1.037 1.033 

 

Table A-0-4: Average Maximum Final Population Metrics for Sensitivity Analysis 

Analysis Name Peak Pin Power Peak Kinf  EOC Kinf 

Base 1.150 1.318 1.097 

First Selection Weight 1.150 1.318 1.093 

Second Selection Weight 1.150 1.318 1.094 

Third Selection Weight 1.150 1.318 1.094 

Fourth Selection Weight 1.150 1.319 1.094 

Fifth Selection Weight 1.150 1.319 1.094 

Sixth Selection Weight 1.150 1.318 1.094 

First Small Population 1.150 1.317 1.098 

Second Small Population 1.150 1.317 1.093 

First Alternate Mutation 1.150 1.319 1.094 

Second Alternate Mutation 1.150 1.318 1.095 

Large Power Bin Size 1.143 1.317 1.093 

Large Peak Kinf Bin Size 1.145 1.279 1.092 

Large End Kinf Bin Size 1.149 1.319 1.094 
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Figure A-0-1: Selection Weight One Solution Space Results. A: Average number of solutions 

per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-2: Selection Weight Two Solution Space Results. A: Average number of solutions 

per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-3: Selection Weight Three Solution Space Results. A: Average number of 

solutions per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-4: Selection Weight Four Solution Space Results. A: Average number of solutions 

per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-5: Selection Weight Five Solution Space Results. A: Average number of solutions 

per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-6: Selection Weight Six Solution Space Results. A: Average number of solutions 

per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-7: Small Population One Solution Space Results. A: Average number of solutions 

per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-8: Small Population Two Solution Space Results. A: Average number of solutions 

per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-9: First Alternate Mutation Rate One Solution Space Results. A: Average 

number of solutions per bin in the solution space. B: Error in the average number of solutions per 

bin. 

A B 
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Figure A-0-10: Second Alternate Mutation Rate Two Solution Space Results. A: Average 

number of solutions per bin in the solution space. B: Error in the average number of solutions per 

bin. 

A B 
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Figure A-0-11: Large PPF Bin Size Solution Space Results. A: Average number of solutions 

per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-12: Large Peak Kinf Bin Size Solution Space Results. A: Average number of 

solutions per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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Figure A-0-13: Large EOC Kinf Bin Size Solution Space Results. A: Average number of 

solutions per bin in the solution space. B: Error in the average number of solutions per bin. 

A B 
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  Table A-5 gives the average distances between the individual optimization runs and the 

optimal solution front for the selection weight cases. Figure A-14 compares the solution front and 

solution spaces of the first select weight and base cases, and Figure A-15 compares the solution 

front and solution spaces of the second select weight and base cases. Figure A-16 compares the 

solution front and solution spaces of the third select weight and base cases. Figure A-17 compares 

the solution front and solution spaces of the fourth select weight and base cases. Figure A-18 

compares the solution front and solution spaces of the fifth select weight and base cases. Figure 

A-19 compares the solution front and solution spaces of the sixth select weight and base cases. 

Table A-5: Average Distance Comparison of Selection Weight Cases 

Case Name Case Part Average Distance for EOC Kinf Range 

 
 1.02 – 

1.04 

1.04 – 

1.06 

1.06 – 

1.08 

1.08 – 

1.10 

Total 

First Selection Weight 

Test 8.41 9.18 14.00 21.31 52.89 

Base 10.97 10.87 11.20 14.77 47.81 

Difference -2.56 -1.69 2.79 6.53 5.08 

Second Selection 

Weight 

Test 4.78 9.77 13.60 23.13 51.28 

Base 6.93 11.04 12.23 14.88 45.08 

Difference -2.15 -1.27 1.37 8.26 6.20 

Third Selection 

Weight 

Test 3.89 11.55 16.55 19.90 51.89 

Base 4.52 9.96 15.12 14.95 44.56 

Difference -0.63 1.59 1.43 4.95 7.34 

Fourth Selection 

Weight 

Test 11.01 10.20 13.71 22.75 57.67 

Base 14.26 10.24 14.56 15.49 54.55 

Difference -3.25 -0.04 -0.85 7.26 3.12 

Fifth Selection 

Weight 

Test 4.90 11.49 15.62 22.03 54.04 

Base 5.14 12.55 14.77 14.26 46.72 

Difference -0.24 -1.06 0.85 7.76 7.31 

Sixth Selection 

Weight 

Test 4.23 11.08 13.31 19.71 48.32 

Base 5.07 9.97 12.94 14.78 42.78 

Difference -0.85 1.10 0.36 4.92 5.54 
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Figure A-0-14: Solution Front and Solution space comparison between base and first select 

weight test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case only. 

2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-15: Solution Front and Solution space comparison between base and second 

select weight test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case 

only. 2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-16: Solution Front and Solution space comparison between base and third 

select weight test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case 

only. 2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-17: Solution Front and Solution space comparison between base and fourth 

select weight test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case 

only. 2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-18: Solution Front and Solution space comparison between base and fifth select 

weight test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case only. 

2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-19: Solution Front and Solution space comparison between base and sixth select 

weight test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case only. 

2 is filled by test case only. 3 is filled by both cases. 

A B 
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As previously indicated in Table A-0-2 through Table A-0-4, there are not large differences 

in the final population metrics between the six weight selection cases and the base case. The total 

distances in Table A- for the base case are less than the distances for the selection weight test cases. 

The distances between the test cases and the optimal curve are less than the distance between the 

base and optimal case for lower EOC Kinf values but are significantly greater at the highest EOC 

Kinf. Figure A-12 through Figure A-19 confirms that at lower EOC values the optimal solution 

front is mostly composed of values from the test cases. Optimal solution fronts at higher EOC kinf 

values mostly use solutions from the base case. Additionally, these figures indicate the base 

optimization searches a wider area of the solution space than any of the selection weight test cases. 

Many of the bins explored only by the base case are found in the upper left-hand corner. This is 

the area where the solution fronts are located.  

Table A-6 gives the average distances between the individual optimization runs and the 

optimal solution front for the population size test cases. Figure A-20 compares the solution front 

and solution spaces of the first population size test and base cases, and Figure A-21 compares the 

solution front and solution spaces of the second population size test and base cases. 

Table A-6: Average Distance Comparison of Small Population Cases 

Case Name Case Part Average Distance for EOC Kinf Range 

 
 1.02 – 

1.04 

1.04 – 

1.06 

1.06 – 

1.08 

1.08 – 

1.10 

Total 

First Small Population 

Test 10.10 16.50 25.39 20.79 72.78 

Base 3.78 9.73 14.62 16.60 44.73 

Difference 6.32 6.78 10.76 4.19 28.05 

Second Small 

Population 

Test 4.48 14.57 19.78 15.40 54.22 

Base 3.78 10.38 15.96 18.52 48.64 

Difference 0.70 4.19 3.82 -3.12 6.20 
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Figure A-0-20: Solution Front and Solution space comparison between base and first small 

population test cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case 

only. 2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-21: Solution Front and Solution space comparison between base and second 

small population test case. A: Solution Front. B: Solution Space. 1 indicates bin filled by base 

case only. 2 is filled by test case only. 3 is filled by both cases. 

A B 
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As shown in Table A-0-2 through Table A-0-4, the final population metrics are the same 

or slightly worse for the small population cases than the base case. The total distances in for the 

base case are less than the distances for the small population test cases. Figure A-20 and Figure 

A-21 show that the solution fronts are mostly composed of solutions from the base case in the 

small population tests. Additionally, these figures indicate the base optimization searches a wider 

area of the solution space than any of the small population test cases.  

Table A-7 gives the average distances between the individual runs of the optimization to 

the optimal solution front. Figure A-22 compares the solution front and solution spaces of the first 

alternate mutation rate test case and base cases. Figure A-23 compares the solution front and 

solution spaces of the second alternate mutation rate test case and base cases. 

Table A-7: Average Distance Comparison of Alternate Mutation Rate Cases 

Case Name Case Part Average Distance for EOC Kinf Range 

 
 1.02 – 

1.04 

1.04 – 

1.06 

1.06 – 

1.08 

1.08 – 

1.10 

Total 

First Alternate Rate 

Test 6.42 12.11 14.74 22.34 55.61 

Base 8.03 10.32 14.70 15.71 48.76 

Difference -1.61 1.79 0.04 6.63 6.85 

Second Alternate 

Rate 

Test 12.56 11.33 17.35 21.44 62.68 

Base 3.83 9.87 15.36 19.40 48.46 

Difference 8.72 1.45 1.99 2.05 14.21 

 

As shown in Table A-0-2 through Table A-0-4, the final population metrics are similar for 

the alternate mutation rate cases and the base case. The total distances in for the base case are less 

than the distances for the alternate mutation rate test cases. Figure A-22 and Figure A-23 show 

that the solution fronts are mostly composed of solutions from the base case in the alternate 

mutation rate tests. Additionally, these figures indicate the base optimization searches a wider area 

of the solution space than any of the alternate mutation rate cases.  
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Figure A-0-22: Solution Front and Solution space comparison between base and first 

alternate mutation rate cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by 

base case only. 2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-23: Solution Front and Solution space comparison between base and second 

alternate mutation rate cases. A: Solution Front. B: Solution Space. 1 indicates bin filled by 

base case only. 2 is filled by test case only. 3 is filled by both cases. 

A B 
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Table A-8 gives the average distances between the individual runs of the optimization to 

the optimal solution front for the large bin size cases. Figure A-24 compares the solution front and 

solution spaces of the large power bin size and base cases. Figure A-25 compares the solution front 

and solution spaces of the large peak kinf bin size and base cases. Figure 5-3 compares the solution 

front and solution spaces of the large end kinf bin size and base cases. 

Table A-8: Average Distance Comparison of Large Bin Size Cases 

Case Name Case Part Average Distance for EOC Kinf Range 

 
 1.02 – 

1.04 

1.04 – 

1.06 

1.06 – 

1.08 

1.08 – 

1.10 

Total 

Large Power Bin Size 

Test 7.67 12.11 16.48 21.22 57.48 

Base 7.38 12.04 18.30 15.60 53.32 

Difference 0.29 0.06 -1.82 5.62 4.16 

Large Peak Kinf Bin 

Size 

Test 5.93 14.62 25.82 20.49 66.86 

Base 3.78 13.29 23.20 20.06 60.33 

Difference 2.16 1.33 2.61 0.43 6.53 

Large EOC Kinf Bin 

Size 

Test 2.70 11.38 13.30 18.41 45.79 

Base 4.55 11.58 17.11 20.74 53.98 

Difference -1.85 -0.19 -3.81 -2.33 -8.19 

 

As shown in Table A-0-2 through Table A-0-4, the final population metrics differ from 

the base case, with average values being lower for the large bin size test cases than the base case. 

This is because solution space is larger for the base case than the large bin size test cases, so only 

fitter solutions will survive the binning process for the large bin size tests. The total distances in 

for the base case are less than the large power bin size and large peak kinf bin size. The distance 

for the large EOC kinf bin size is less than the distance for the base case. Figure A-24 and Figure 

A-25 show that the solution fronts are mostly composed of solutions from the base case, but that 

Figure 5-3 is most composed of solutions from the large EOC bin size case. These figures 

indicate the base optimization searches a wider area of the solution space than the large bin size 

test cases.  
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Figure A-0-24: Solution Front and Solution space comparison between base and the large 

PPF bin size case. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case only. 

2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-25: Solution Front and Solution space comparison between base and the large 

peak kinf bin size. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case only. 

2 is filled by test case only. 3 is filled by both cases. 

A B 
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Figure A-0-26: Solution Front and Solution space comparison between base and the large 

EOC kinf bin size. A: Solution Front. B: Solution Space. 1 indicates bin filled by base case 

only. 2 is filled by test case only. 3 is filled by both cases. 
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